Article

Landscape of Combination Therapy - Which Way Forward? Proceedings of the Satellite Symposium Held at the ESH European Meeting on Hypertension and Cardiovascular Protection, 27 April 2012, London

Register or Login to View PDF Permissions
Permissions× For commercial reprint enquiries please contact Springer Healthcare: ReprintsWarehouse@springernature.com.

For permissions and non-commercial reprint enquiries, please visit Copyright.com to start a request.

For author reprints, please email rob.barclay@radcliffe-group.com.
Average (ratings)
No ratings
Your rating

Disclosure:Patricia Fonseca is an employee at Touch Briefings.

Received:

Accepted:

Copyright Statement:

The copyright in this work belongs to Radcliffe Medical Media. Only articles clearly marked with the CC BY-NC logo are published with the Creative Commons by Attribution Licence. The CC BY-NC option was not available for Radcliffe journals before 1 January 2019. Articles marked ‘Open Access’ but not marked ‘CC BY-NC’ are made freely accessible at the time of publication but are subject to standard copyright law regarding reproduction and distribution. Permission is required for reuse of this content.

Abstract

Early combination therapy is more effective for hypertension control in high-risk patients than monotherapy, and current guidelines recommend the use of either an angiotensin-converting enzyme inhibitor (ACEI) or angiotensin II receptor blocker (ARB) for first-line therapy in patients younger than 55 years. Recent evidence shows that ACEIs reduce mortality, whereas ARBs show no apparent benefit despite their blood pressure lowering action. However, it is important to consider which blood pressure parameters should be targeted given that different drugs have distinct effects on key parameters. Remarkably, a high percentage of hypertensive patients whose treatment has brought these parameters within target ranges still remain at high risk of cardiovascular disease due to additional risk factors. Combination therapy with synergistic effects on blood pressure and metabolic control should thus be considered for the long-term treatment of hypertensive patients with co-morbid conditions.

To view the full article, please click on the PDF icon.

References

  1. Nkomo VT, Gardin JM, Skelton TN, et al., Burden of valvular heart diseases: a population-based study, Lancet, 2006;368:1005–11.
    Crossref | PubMed
  2. Ross J Jr, Braunwald E, Aortic stenosis, Circulation, 1968;38(1 Suppl.):61–7.
    Crossref | PubMed
  3. Rosenhek R, Klaar U, Schemper M, et al., Mild and moderate aortic stenosis. Natural history and risk stratification by echocardiography, Eur Heart J, 2004;25:199–205.
    Crossref | PubMed
  4. Amato MC, Moffa PJ, Werner KE, Ramires JA, Treatment decision in asymptomatic aortic valve stenosis: role of exercise testing, Heart, 2001;86:381–6.
    Crossref | PubMed
  5. Rosenhek R, Iung B, Tornos P, et al., ESC Working Group on Valvular Heart Disease Position Paper: assessing the risk of interventions in patients with valvular heart disease, Eur Heart J, 2012;33(7):822–8.
    Crossref | PubMed
  6. Jamieson WR, Edwards FH, Schwartz M, et al., Risk stratification for cardiac valve replacement. National Cardiac Surgery Database. Database Committee of The Society of Thoracic Surgeons, Ann Thorac Surg, 1999;67:943–51.
    Crossref | PubMed
  7. Vahanian A, Baumgartner H, Bax J, et al., Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology, ESC Committee for Practice Guidelines, Guidelines on the management of valvular heart disease: The Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology, Eur Heart J, 2007;28:230–68.
    Crossref | PubMed
  8. Osswald BR, Gegouskov V, Badowski-Zyla D, et al., Overestimation of aortic valve replacement risk by EuroSCORE: implications for percutaneous valve replacement, Eur Heart J, 2009;30:74–80.
    Crossref | PubMed
  9. Iung B, Baron G, Butchart EG, et al., A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on Valvular Heart Disease, Eur Heart J, 2003;24:1231–43.
    Crossref | PubMed
  10. Pai RG, Kapoor N, Bansal RC, Varadarajan P, Malignant natural history of asymptomatic severe aortic stenosis: benefit of aortic valve replacement, Ann Thorac Surg, 2006;82:2116–22.
    Crossref | PubMed
  11. Iung B, Cachier A, Baron G, et al., Decision-making in elderly patients with severe aortic stenosis: why are so many denied surgery?, Eur Heart J, 2005;26:2714–20.
    Crossref | PubMed
  12. Rosenhek R, Binder T, Porenta G, et al., Predictors of outcome in severe, asymptomatic aortic stenosis, N Engl J Med, 2000;343:611–7.
    Crossref | PubMed
  13. Rosenhek R, Zilberszac R, Schemper M, et al., Natural history of very severe aortic stenosis, Circulation, 2010;121:151–6.
    Crossref | PubMed
  14. Lund O, Nielsen TT, Emmertsen K, et al., Mortality and worsening of prognostic profile during waiting time for valve replacement in aortic stenosis, Thorac Cardiovasc Surg, 1996;44:289–95.
    Crossref | PubMed
  15. Arias E, United States life tables, 2007, Natl Vital Stat Rep, 2011;59:1–60.
    PubMed
  16. Cribier A, Eltchaninoff H, Bash A, et al., Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description, Circulation, 2002;106:3006–8.
    Crossref | PubMed
  17. Otto CM, Mickel MC, Kennedy JW, et al., Three-year outcome after balloon aortic valvuloplasty. Insights into prognosis of valvular aortic stenosis, Circulation, 1994;89:642–50.
    Crossref | PubMed
  18. Walther T, Simon P, Dewey T, et al., Transapical minimally invasive aortic valve implantation: multicenter experience, Circulation, 2007;116(11 Suppl.):I240–5.
    Crossref | PubMed
  19. Bapat V, Khawaja MZ, Attia R, et al., Transaortic transcatheter aortic valve implantation using edwards sapien valve: a novel approach, Catheter Cardiovasc Interv, 2012;79:733–40.
    Crossref | PubMed
  20. Bapat V, Thomas M, Hancock J, Wilson K, First successful trans-catheter aortic valve implantation through ascending aorta using Edwards SAPIEN THV system, Eur J Cardiothorac Surg, 2010;38:811–3.
    Crossref | PubMed
  21. Leon MB, Smith CR, Mack M, et al., PARTNER Trial Investigators, Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery, N Engl J Med, 2010;363:1597–607.
    Crossref | PubMed
  22. Smith CR, Leon MB, Mack MJ, et al., PARTNER Trial Investigators, Transcatheter versus surgical aortic-valve replacement in high-risk patients, N Engl J Med, 2011;364:2187–98.
    Crossref | PubMed
  23. Thomas M, Schymik G, Walther T, et al., One-year outcomes of cohort 1 in the Edwards SAPIEN Aortic Bioprosthesis European Outcome (SOURCE) registry: the European registry of transcatheter aortic valve implantation using the Edwards SAPIEN valve, Circulation, 2011;124:42–33.
    Crossref | PubMed
  24. Thomas M, The global experience with percutaneous aortic valve replacement, JACC Cardiovasc Interv, 2010;3:1103–9.
    Crossref | PubMed
  25. Vahanian A, Alfieri O, Al-Attar N, et al., European Association of Cardio-Thoracic Surgery, European Society of Cardiology, European Association of Percutaneous Cardiovascular Interventions, Transcatheter valve implantation for patients with aortic stenosis: a position statement from the European Association of Cardio-Thoracic Surgery (EACTS) and the European Society of Cardiology (ESC), in collaboration with the European Association of Percutaneous Cardiovascular Interventions (EAPCI), Eur Heart J, 2008;29:1463–70.
    Crossref | PubMed